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Abstract

This work investigates the development of a deep neural
network for knife categorization based on photographic in-
put, aiming to aid law enforcement in addressing the surge
in knife-related crimes. The study is divided into three key as-
pects: an exploration of hyperparameters, an analysis of dif-
ferent deep model architectures and a combination of them to
achieve the best precision possible. A final model will be pro-
posed in section 3.3, and gives satisfactory results in terms of
the precision/computation power balance. Finally, tools for
AI explainability will be used to unpack the black boxes that
are these models. The NVIDIA®V100 tensor core GPU [11]
will be used for the computations, provided by Google Colab
Pro.

1. Introduction
1.1. The aim of the coursework

This work aims at classifying knives based on real-life
photos. In contrary to other classification problems, the dif-
ferences between two classes are often very subtle. There-
fore, this classification problem requires a Fine-Grained Im-
age Analysis [16].

1.2. The dataset

The image dataset available contains around 10,000 im-
ages of knives, divided into 192 classes. This dataset has
been enlarged using augmentation, notably rotations, crop-
ping, saturation and brightness tweaking. We divide this
dataset into a train and a test dataset, of respectively 9928
and 351 images.

1.3. The strategy used

In order to obtain satisfying results while training a deep
neural network, both the architecture and the hyperparam-
eters are to be chosen with the greatest consideration, and
require a quantity of experimentations. This work is then di-
vided into two mains parts: section 2 focuses on hyperparam-
eter exploration, specifically examining the effects of learn-
ing rates, schedulers, batch size, optimizer and the number of

epochs on the model’s performance, and section 3 explores
different deep model architectures along with variations in
their parameters, and two models of Ensemble Learning.

1.4. The evaluation metrics used

To ensure the effectiveness of the training procedure, we
should define a loss function. We chose the cross entropy
loss [20]:

LCE = −
n∑

i=1

ti log (pi)

for n classes, where ti is the truth label and pi is the Softmax
probability for the ith class. This metric is not an evaluation
metric, but is still interesting to analyse how fast the model
is adapting to the training data.

To evaluate a model, we will use the Mean Average Pre-
cision at 5 (MAP@5) [19] on a separate test dataset, which
is the classical method of evaluation for machine-learning
models. It is calculated using the following formula:

MAP@5 =
1

N

N∑
i=1

(
TPi

i
× reli

)
where N is the total number of examples, TPi is the num-
ber of true positive predictions for the i-th example in the
ranked list of predictions (up to rank 5) and reli is an indica-
tor function that is 1 if the i-th example is relevant (correctly
predicted), and 0 otherwise.

This formula represents the average precision at each
rank, and the mean is taken over all examples. We will use
both MAP@5 and MAP@1 to compare the performances of
the different models during the coursework.

2. Exploration of the hyperparameters

While training a neural network to accomplish any task,
the choice of the hyperparameter is crucial and requires some
experimentations. To explore the effect of the main ones, we
will, in this first section, be using the proposed architecture
model EfficientNet-B0 [10].
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2.1. The effect of the learning rate

The learning rate parameter determines the size of the
step taken during the optimization process: it influences how
much the model’s parameters are updated with each iteration
of the training process. Choosing an appropriate learning
rate is crucial for training a deep neural network effectively.
Figure 1 shows the experimentations done to find the optimal
value of the learning-rate for our specific task.

Figure 1. Variation of the loss (top, logarithmic scale, lower is
better) and the mean average precision (bottom, higher is better)
through the number of epochs and for different learning rates

A very high learning rate (lr = 10−2) fails to give sat-
isfactory results, because it exceeds the value aimed at each
iteration of the training process. A high learning rate (lr =
10−3 or lr = 5∗10−2) causes the model to converge quickly.
However, it overshoots the minimum and lead to a slow con-
vergence to zero loss. On the other hand, a low learning rate
(lr = 10−5) causes a very slow convergence. The optimal
learning rate here seems to be around lr = 10−4, the dark
blue curve on Figure 1. After 7 epochs only, we reach a loss
value of 0.014 and a satisfying MAP@5 of 69.1%.

2.2. The effect of the scheduler

However, it seems preferable to have a high learning rate
at the beginning of the training process in order to make the
parameters of the neural network converge quickly, then to
lower it down to fine-tune these parameters and increase ac-
curacy. This concept is called scheduling, and the tool used
is a scheduler.

We plot the value of the learning rate through time during
the training on figure 2a. We will use the Cosine Annealing
scheduler: with an initial learning rate of 10−2, its value goes
down to almost zero, where the fine-tuning operates.

(a) Learning rate
through time during the
training of the network
(Cosine Annealing)
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(b) Comparison of the loss of the model
with different initial learning rates after
7 epochs (lower is better)

Figure 2. Using a Cosine Annealing scheduler

Figure 2b compares the loss of the model after 7 epochs
of training, with and without the use of a scheduler. We can
notice that the use of a scheduler offers an important increase
in performance, and specifically when the initial learning rate
is high, as explained at the beginning of 2.2. If the initial
learning rate is too low, lowering it even more during the
training is not desirable.

Using the scheduler, we find the best result after 7 epochs
only with a learning rate of 1 ∗ 10−4, with a precision of
70.4% and a loss value of 0.003.

2.3. The effect of the batch size

For this next section, we will use the optimal hyperpa-
rameters we found in section 2.2, so an initial learning rate
of 1∗10−4 and the use of a scheduler. We will vary the batch
size, and test with batch size ∈ {16, 32, 64}. The batch size
defines the number of samples to work through before updat-
ing the internal model parameters in a deep neural network.
In general, large batch sizes leads to faster training times but
may result in lower accuracy and overfitting, while smaller
batch sizes can provide better accuracy, but can be computa-
tionally expensive and time-consuming. This general result
is verified by the experimental results showed in table 1 and
on figure 3.

Batch size loss mAP time (min)
16 0.001 0.741 30
32 0.004 0.661 20
64 0.008 0.667 18

Table 1. Effect of the batch size after 20 epochs

(a) Loss through the epochs (b) mAP through the epochs

Figure 3. Loss and mAP curve for different batch sizes
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After seeing these results, we might opt for a small batch
size to optimize the precision of the model, but we must keep
in mind that this choice is computationally expensive and
time-consuming.

2.4. Comparing the optimizers

In this section, we will compare the results using the
Adam Optimizer [9] and the SGD Optimizer with different
momentum [13]. While Adam uses adaptive learning rates
for each parameter, with the SGD Optimizer, the learning
rate is equal for all of them. Without a momentum, the update
is solely based on the current gradient, without considering
past gradients. The variant of SGD that includes momentum
takes into account the past gradients in updating the param-
eters. We will call the momentum γ as it is usually done in
the literature.

Optimizer loss mAP (%)
SGD (γ = 0) 5.226 2.5

SGD (γ = 0.9) 4.398 16.0
Adam 0.002 69.4

Table 2. Effect of the optimizer after 20 epochs

(a) Loss through the epochs (b) mAP through the epochs

Figure 4. Loss and mAP curve for different optimizers

The results are indisputable, and while adding a momen-
tum gives a significant boost in performances to the SGD op-
timizer, Adam gives remarkably better results. In fact, SGD
optimizers are outdated nowadays, and Adam is, according
to the literature, almost always the way to go while training
deep neural networks [2].

2.5. Fine-Tuning vs. Transfer learning vs. Learning
from scratch

Fine-tuning, transfer learning, and learning from scratch
are three different approaches to training neural networks,
each with its own advantages and use cases. Again with the
EfficientNet-B0 architecture, let’s explore each of them:

- Learning from Scratch: the model starts with random
weights, and the entire network is trained on a specific task.

- Transfer learning involves using a pre-trained model on a
source task and fine-tuning it for a different but related target
task. The idea is to leverage the knowledge gained by the
model on the source task and apply it to the target task.

- Fine-tuning is a specific form of transfer learning in
which, very often, some layers are frozen during the train-
ing. By training only the last layers to a specific task, we
make use of the semantic feature extracted from the original
network.

(a) Loss through the epochs (b) mAP through the epochs

Figure 5. Loss and mAP curve for different training techniques

If training from scratch is so inefficient in our case, it is
because we don’t have enough computation resource to fully
train the model. Moreover, the pre-trained models we are
using, EfficientNet-B0, has shown incredible results in im-
age classification tasks [10]: it is no surprise that transfer-
learning is efficient. Finally, we notice that freezing the first
layers do not improve drastically the precision in our case.
There is a significant difference between the data distribution
of the pre-training task and the fine-tuning task (the model
has been trained on ImageNet-1k [6], and our knife images
are quite different). Indeed, pre-trained models may have al-
ready learned representations that are optimal for the source
task, and freezing the initial layers prevents these layers from
adapting to the nuances of the target task.

3. Deep model architectures
The choice of a deep neural network architecture is crucial

as it defines the model’s capacity to learn complex patterns,
influences computational efficiency for both training and in-
ference, and determines its adaptability to specific tasks, im-
pacting overall performance and generalization.

3.1. Using different networks

In this section, we will analyse and compare some of
the most popular CNN architectures : EfficientNet [10] (the
model we were using from the beginning of the coursework),
ResNet-18 [8], MobileNet v.3 [1] and SKResNet [18]. These
DNN models exhibit a modest parameter count, with the
most efficient ones nowadays possessing at least four times
as many parameters. These were chosen to match the com-
putation power available for this work.

3.1.1 The specificities of the architectures

EfficientNet uses compound scaling [10]. The general
idea is that the best way to scale a model is to do it in the
three dimensions: width, depth, and image resolution.

ResNet tackles the vanishing gradient problem, an issue
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that occurs in very deep neural networks (the gradients em-
ployed for updating the network diminish significantly as
they propagate backward from the output layers to the earlier
layers during backpropagation). A skip connection allows
the signal to bypass one or more layers and to be added di-
rectly to the output of the network. [8]

MobileNet minimizes the number of parameters, by using
Depthwise Separable Convolution and Pointwise Convolu-
tion [12].

SKResNet builds upon the ResNet architecture by incor-
porating the concept of receptive field sizes, resulting in the
inclusion of Selective Kernel units [18].

3.1.2 A comparison of deep CNN architectures

Architecture Number of param. Loss mAP
EfficientNet-B0 11M 0.002 0.694

ResNet-18 11M 0.001 0.586
MobileNet 13M 0.000 0.513

SKResNet-18 12M 0.001 0.403

Table 3. Comparison of different CNN architectures after 20 epochs
of training

(a) Loss through the epochs (b) mAP through the epochs

Figure 6. Loss and mAP curve for different model architectures

As shown again with these results, EfficientNet models
have consistently achieved state-of-the-art results on various
benchmark datasets. Moreover, its design principles priori-
tize computation efficiency. Finally, compound scaling aims
to adapt to specific characteristics of different tasks [10].
Thus, transfer learning is very efficient. On the contrary,
ResNet’s skip connections may lead to overfitting during
fine-tuning, while MobileNet’s lack of regularization hin-
ders effective generalization, especially with a small target
dataset.

The largest model trained for the purpose of this course-
work is EfficientNet-B3, with 78.6% of MAP@5 after 55
epochs (5 hours training). The log file can be found attached
in log effnet-b3.txt.

3.2. Comparison of Vision Transformer (ViT) image
classification model

Along with CNNs, Vision Transformers stands out as one
of the foremost choice for image classification tasks. Un-

like CNNs, ViTs process images using self-attention mech-
anisms that allow them to consider relationships between all
image regions simultaneously, enabling them to capture a
more global context.

Two new hyperparameters are to be chosen when using a
ViT: the patch size and the size of the input image. The patch
size informs a speed/accuracy tradeoff (smaller patches have
higher accuracy and compute cost). Indeed, the idea behind
ViT is to separate input images into non-overlapping patches
and conduct computations on tokens from these patches. We
proceed to computation using three different models [15] [4],
[3], and the results are shown on 7. The models are imported
from the timm [17] library, hosted on Hugging Face [5].

(a) Loss through the epochs (b) mAP through the epochs

Figure 7. Loss and mAP curve for different ViT models. pa refers
to the patch size, and size is the input image size.

ViTs exhibit inferior performance compared to earlier
CNNs, which might be because they often need more train-
ing data than CNNs. Additionally, because CNNs can be
parallelized, they are computationally efficient and better
suitable for real-time and resource-constrained applications.
Therefore, we won’t be using ViTs, which have shown to be
less efficient in our case (MAP@5 < 60%).

3.3. Combining the models

Combining the results of different models, often referred
to as ensemble learning, can be beneficial to reduce the over-
fitting, to increase the robustness to noisy data and to make
the most of complementary architectures. In fact, models
with different architectures capture different aspects of the
underlying patterns in the data. Combining them can exploit
their complementary strengths.

Figure 8 illustrates the two techniques I implemented to
combine the models. The first one (figure 8a) is an Ensemble
learning technique, in which each of the scores attributed to
each of the knife classes are averaged. The second one (fig-
ure 8b) is more complex and offers better results (table 4).
In this latter technique, we take the output of the penultimate
layer of different models, and use that as inputs of a shallow
neural network that we can train. In a CNN, the last few lay-
ers typically contain high-level features or representations of
the input images, and this is crucial in our task where un-
derstanding the overall structure of an image is essential (to
discriminate the background for example).
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(a) Ensemble learning (b) New model

Figure 8. Two different approaches

Architecture MAP@1 (%)
EfficientNet-B0 59.4

ResNet-18 60.9
MobileNet 68.8
SKResNet 45.3

Ensemble learning (8a) 71.9
Shallow NN (8b) 73.4

Table 4. Results of two model combination techniques

The result of 4 is satisfactory in the sense that the new
models score a better precision than the best of the others.
Intuitively, the Ensemble learning method where we aver-
age the labels works best because it reduces overfitting and
compensate the errors of each model. DNN models may spe-
cialize in learning specific features: combining their outputs
allows the shallow NN to leverage complementary informa-
tion, enhancing the overall model’s performance.

4. Explainability
AI explainability is crucial for understanding and inter-

preting complex models known as black boxes, fostering
transparency, uncovering potential biases, and ensuring re-
sponsible and accountable deployment of advanced machine
learning systems in real-world applications. As a bonus part
of this coursework, we will explore Grad-Cam [14], one of
the most used explainability tools for image classification
and object recognition.

Grad-CAM, which stands for Gradient-weighted Class
Activation Mapping, is a technique used for visualizing the
regions of an input image that are important for making a par-
ticular prediction by a CNN. The technical aspect of Grad-
CAM can be found in the following paper [14].

The algorithm generates a heatmap, which highlights the
regions of the input image that contributed the most to the
prediction of the target class. It provides a way to inter-
pret and understand the decisions made by deep neural net-
works. By visualizing the areas of an image that influence
the model’s decision, researchers and practitioners can gain
insights into potential model errors or biases.

We will use this Github repository to compute the Grad-
Cam algorithm on some of our models and input images [7].

We will explore a ResNet-18 model trained with our dataset.

(a) (b) (c) (d)

Figure 9. Examples of Grad-Cam on test image (ResNet-18)

We can notice on figures 9a, 9b and 9c that Grad-Cam
successfully retrieve the parts of the images that are the most
relevant to classify them. In order: the text on the knife, the
original clasp and the unique handle. Moreover, Grad-Cam
also emphasizes where the model fails. On figure 9d, we
notice that the model looks at the background of the image,
whereas the background of an image should not be relevant
when doing knife classification. Thus, it leads to the model
failing to retrieve the correct class of the knife.

5. Conclusion
In addition to studying the key effects of hyperparameters

and the main architecture of deep neural networks, this study
underscores the notable effectiveness of ensemble learning
techniques. We found that combining diverse models signifi-
cantly boosts predictive performance (as seen in table 4) and
requires no to minimal additional training. This efficiency
makes ensemble learning an attractive approach, delivering
gains without extensive retraining.

Looking ahead, the importance of AI explainability tools
grows in shaping the future of artificial intelligence. With in-
creasingly complex models integral to decision-making, un-
derstanding their decisions is crucial. Tools like Grad-CAM
play a pivotal role in demystifying complex models, ensur-
ing transparency for trust and uncovering potential biases or
errors. As we chart AI development’s trajectory, robust ex-
plainability mechanisms become a cornerstone, ensuring re-
sponsible deployment of advanced machine learning models
in real-world applications.
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